Wednesday, May 30, 2012

Pengukuran, Besaran, Dimensi



A. Pengukuran
     Pengukuran merupakan membandingkan sesuatu dengan sesuatu yang lain sebagai patokan. Dalam pengukuran, terdapat 2 faktor utama, yaitu perbandingan dan patokan (standar). Pengukuran juga dapat didefinisikan suatu proses membandingkan suatu besaran dengan besaran lain (sejenis) yang dipakai sebagai satuan (pembanding dalam pengukuran). 

Pengukuran dapat dilakukan dengan 2 cara :
1) Pengukuran Langsung
   Suatu pengukuran dengan menggunakan alat ukur dan langsung memberikan hasilnya. Contoh : pengukuran panjang meja.
2) Pengukuran Tidak Langsung
    Suatu pengukuran dengan menggunakan cara dan perhitungan terlebih dahulu, baru memberikan hasilnya. Contoh : pengukuran benda-benda kuno.

Pengukuran Berdasarkan Sistem Metrik dan SI
       Sistem pengukuran pada awalnya disebut sistem pengukuran metrik. Sistem metrik dikelompokkan menjadi Sistem Metrik Besar atau MKS (Meter Kilogram Second), tahun 1960 satuan ini dipergunakan dan diresmikan menjadi Sistem Internasional (SI) atau biasa disebut dengan Sistem Metrik Kecil atau CGS (Centimeter Gram Second). 
tabel si

a) Sistem Internasional untuk Panjang
   Satuan Besaran dalam sistem SI adalah Meter. Pada mulanya satu meter ditetapkan sama dengan panjang sepersepuluh juta (1/10000000) dari jarak kutub utara ke khatulistiwa melalui Paris. Kemudian dibuatlah batang meter standar dari campuran Platina-Iridium. Satu meter didefinisikan sebagai jarak dua goresan pada batang ketika bersuhu 0ÂșC. 
   Namun, batang meter standar dapat berubah dan rusak karena dipengaruhi oleh suhu, serta menimbulkan kesulitan dalam menentukan ketelitian pengukuran. Pada tahun 1960 definisi satu meter diubah. Satu meter didefinisikan sebagai jarak 1650763,72 kali panjang gelombang sinar jingga yang dipancarkan oleh atom gas krypton-86 dalam ruang hampa pada suatu lucutan listrik.
   Tahun 1983, Konferensi Internasional tentang timbangan  dan ukuran memutuskan bahwa satu meter merupakan jarak yang ditempuh cahaya pada selang waktu 1/299792458 sekon. Penggunaan kecepatan cahaya ini, karena nilainya dianggap selalu konstan.

b) Sistem Internasional untuk Massa
   Besaran massa dalam satuan SI dinyatakan dalam satuan kilogram (Kg). Pada mulanya, para ahli mendefinisikan satu kilogram sebagai massa sebuah silinder yang terbuat dari bahan campuran Platina dan Iridium yang disimpan di Sevres, dekat Paris. Massa satu kilogram didefinisikan sebagai massa satu liter air murni pada suhu 4oC.

c) Sistem Internasional untuk Waktu 
   Besaran waktu dinyatakan dalam satuan detik atau sekon dalam SI. Pada awalnya satuan waktu dinyatakan atas dasar waktu rotasi bumi pada porosnya, yaitu 1 hari. Satu detik didefinisikan sebagai 1/26400 kali satu hari rata-rata. Satu hari rata-rata sama dengan 24 jam = 24 x 60 x 60 = 86400 detik. Karena satu hari matahari tidak selalu tetap dari waktu ke waktu, maka pada tahun 1956 para ahli menetapkan definisi baru. Satu detik adalah selang waktu yang diperlukan oleh atom cesium-133 untuk melakukan getaran sebanyak 9192631770 kali.

d) Sistem Internasional untuk Suhu
      Satu Kelvin adalah 1/273,16 suhu titik tripel air.

e) Sistem Internasional untuk Kuat Arus Listrik
   Satu Ampere adalah arus tetap yang dipertahankan untuk tetap mengalir pada dua batang penghantar sejajar dengan panjang tak terhingga dan dengan luas penampang yang dapat diabaikan dan dipisahkan sejauh satu meter dari vakum, yang akan menghasilkan gaya sebesar 2x10^-7 N m^-1.

f) Sistem Internasional untuk Intensitas Cahaya
   Satu candela adalah intensitas cahaya yang besarnya sama dengan intensitas sebuah sumber cahaya pada satu arah tertentu yang memancarkan radiasi monokhromatik dengan frekuensi 540 x 10^12 Hz dan memiliki intensitas pancaran pada arah tersebut sebesar 1/683 watt per steradian.

g) Sistem Internasional Jumlah Zat
    Satu mol sama dengan jumlah zat yang mengandung satuan elementer sebanyak jumlah atom didalam 0,012 kg karbon -12. satuan elementer dapat berupa atom, molekul, ion, elektron, dll.

2. Besaran
    Besaran adalah sesuatu yang dapat diukur dan dinyatakan dalam angka serta mempunyai nilai satuan. Sistem satuan dalam besaran fisika prinsipnya bersifat standar/baku, yaitu bersifat tetap, berlaku universal, dan dapat digunakan setiap saat dengan tetap. Besaran dalam fisika dikelompokkan menjadi 2, yaitu:
     a. Besaran Pokok
Besaran Pokok adalah besaran yang sudah ditetapkan terlebih dahulu. 
N0Besaran PokokSatuan SI/MKKSSingkatanSatuan Sistem CGSSingkatan
1Panjangmetermcentimetercm
2Massakilogramkggramg
3Waktudetiksdetiks
4SuhukelvinKKelvink
5Kuat arus listrikampereAstat amperestatA
6Intensitas cahayacandelaCdcandelaCd
7Jumlah zatkilo molkmolmolmol
     b. Besaran Turunan
Besaran Turunan merupakan besaran yang dijabarkan dari besaran-besaran pokok.
N0Besaran TurunanPenjabaran dari Besaran PokokSatuan dalam MKKS
1LuasPanjang × Lebarm2
2VolumePanjang × Lebar × Tinggim3
3Massa JenisMassa : Volumekg/m3
4KecepatanPerpindahan : Waktum/s
5PercepatanKecepatan : Waktum/s2
6GayaMassa × Percepatannewton (N) = kg.m/s2
7UsahaGaya × Perpindahanjoule (J) = kg.m2/s2
8DayaUsaha : Waktuwatt (W) = kg.m2/s3
9TekananGaya : Luaspascal (Pa) = N/m2
10MomentumMassa × Kecepatankg.m/s


3. Dimensi
     Dimensi menyatakan sifat fisis suatu besaran, atau dengan kata lain dimensi merupakan simbol dari besaran pokok. Dimensi dapat dipakai untuk mengecek rumus-rumus fisika. Rumus Fisika yang benar, harus mempunyai dimensi yang sama pada kedua ruas. 
   Dimensi Besaran fisika diwakili dengan simbol, misalnya M, L dan T. M mewakili Massa (mass), L mewakili Panjang (Length), dan T mewakili waktu (Time). Ada 2 macam dimensi, yaitu Dimensi Primer dan Dimensi Sekunder. Dimensi Primer meliputi M (untuk satuan massa), L (untuk satuan Panjang), dan T (untuk satuan waktu). Dimensi Sekunder adalah dimensi dari semua besaran turunan yang dinyatakan dalam dimensi primer. 

Manfaat dimensi dalam Fisika
  1. Dapat digunakan untuk membuktikan dua besaran sama atau tidak. Apabila dua besaran sama, jika keduanya memiliki dimensi yang sama atau keduanya merupakan besaran vektor atau skalar.
  2. dapat digunakan untuk menentukan persamaan yang pasti salah atau mungkin benar.
  3. dapat digunakan untuk menurunkan persamaan suatu besaran fisis jika kesebandingan besaran fisis tersebut dengan besaran-besaran fisis lainnya diketahui 


Perbedaan Satuan dengan Dimensi
a) Satuan
  • Satuan besaran fisis didefinisikan dengan perjanjian, berhubungan dengan standar tertentu. (Contoh pada besaran panjang dapat memiliki satuan meter, kaki, inci, mil, atau mikrometer). 
  • Dua satuan yang berbeda dapat dikonversi satu sama lain. (Contoh : 1 m = 39,37 in, angka 39,37 ini disebut sebagai faktor konversi)
b) Dimensi

Sifat dan Cabang-cabang Ilmu Fisika serta Hubungannya dengan Ilmu Pengetahuan Lain


A. Sifat Fisika
  • Sifat fisika merupakan sifat materi yang dapat dilihat secara langsung dengan indra. 
  • Sifat fisika adalah perubahan yang dialami suatu benda tanpa membentuk zat baru
  • Sifat fisika diantaranya adalah : wujud zat, warna, bau, titik leleh, titik didih, massa jenis, kekerasan, kelarutan, kekeruhan dan kekentalan.
1. Wujud Zat
         Wujud zat terbagi atas zat padat, cair, dan gas.
  - Zat Padat
       Zat padat mempunyai sifat bentuk dan volumenya tetap. Bentuk yang tetap dikarenakan partikel-partikel pada zat padat saling berdekatan (rapat), tersusun teratur dan mempunyai gaya tarik antar partikel yang sangat kuat. volumenya tetap dikarenakanbpartikel pada zat padat dapat bergerak dan berputar pada kedudukannya saja.
   - Zat Cair
      Zat cair mempunyai sifat bentuk yang berubah-ubah dan volumenya tetap. Bentuknya yang berubah-ubah dikarenakan partikel-partikel pada zat cair berdekatan tetapi renggang, tersusun teratur, dan gaya tarik antar partikel agak lemah. Volumenya tetap dikarenakan partikel pada zat cair mudah berpindah, tetapi tidak dapat meninggalkan kelompoknya. 
   - Zat Gas        
       Zat gas mempunyai sifat bentuk dan volume yang berubah-ubah. Bentuknya berubah-ubah dikarenakan partikel-partikel pada zat gas berjauhan, tersusun tidak teratur, dan gaya tarik antar partikel sangat lemah. Volumenya berubah-ubah karena partikel pada zat gas dapat bergerak bebas meninggalkan kelompoknya.  

 2. Kekeruhan (Turbidity)
       Kekeruhan terjadi pada zat cair. Kekeruhan cairan disebabkan adanya partikel suspensi yang halus. Jika sinar cahaya dilewatkan pada cairan yang keruh, maka intensitasnya akan berkurang karena dihamburkan. Hal ini bergantung pada konsentrasinya. Alat untuk mengetahui intensitas cahaya pada zat cair yang keruh atau untuk mengukur tingkat kekeruhan disebut turbidimetry.

3. Kekentalan (Viskositas)
       Kekentalan adalah ukuran ketahanan zat cair untuk mengalir. Untuk mengetahui kekuatan mengalir (flow rate) zat cair, digunakan alat viskometer. Flow rate digunakan untuk menghitung indeks viskositas. Viskositas cairan terjadi karena gesekan molekul-molekul. 
      Viskositas juga sangat dipengaruhi oleh struktur molekul cairan. Jika struktur molekulnya kecil dan sederhana maka molekul tersebut dapat bergerak cepat, contohnya air. Dan sebaliknya, jika molekulnya besar dan saling bertautan, maka zat tersebut akan bergerak sangat lambat, contohnya oli. Molekul-molekul cairan yang bergerak cepat, dikatakan memiliki viskositas/kekentalan rendah, sedangkan apabila molekul cairan bergerak lambat, maka dikatakan memiliki viskositas/kekentalan yang tinggi. 

 4. Titik Didih
      Titik didih merupakan suhu ketika suatu zat mendidih. Mendidih berbeda dengan menguap, Mendidih terjadi pada suhu tertentu yaitu pada titik didih, sedangkan menguap terjadi pada suhu berapa saja di bawah titik didih. Contohnya, pada saat kita menjemur pakaian, maka airnya menguap bukan mendidih, sedangkan apabila kita memanaskan air di kompor hanya pada titik suhu tertentu air tersebut dapat mendidih. titik didih berbagai zat berbeda, bergantung pada struktur dan sifat bahan. 

5. Titik Leleh
     Titik leleh merupakan suhu ketika zat padat berubah menjadi zat cair. Misalnya garam dapur jika dipanaskan akan meleleh menjadi cairan. Perubahan ini dipengaruhi oleh struktur kristal pada zat tersebut. Zat cair dan zat gas juga memiliki titik leleh, tetapi perubahannya tidak dapat diamati pada suhu kamar.

6. Kelarutan 
      Larutan merupakan campuran homogen yang terdiri dari dua komponen, yaitu pelarut dan terlarut. Pelarut merupakan zat yang melarutkan, dan biasanya jumlahnya lebih banyak, sedangkan zat terlarut adalah zat yang dilarutkan, biasanya dengan jumlah yang lebih sedikit. Kelarutan dipengaruhi oleh berbagai faktor, diantaranya sebagai berikut :
          a) Suhu
         Pada saat kita melarutkan kopi dan gula, akan lebih cepat larut dalam air panas dibandingkan dengan air dingin. Mengapa demikian? Kenaikan suhu menyebabkan energi kinetik partikel zat bertambah sehingga partikel pada suhu yang tinggi akan bergerak lebih cepat dibandingkan dengan suhu yang rendah. Kondisi ini menyebabkan terjadinya tumbukan antara partikel zat pelarut dengan partikel zat terlarut.
          b) Volume Pelarut
        Pada saat kita melarutkan 2 sendok gula kedalam 100 mL air, dan 2 sendok gula kedalam 500 mL air, maka gula tersebut akan lebih cepat larut dalam 500 mL air, mengapa demikian?. Semakin besar volume pelarut, maka jumlah partikel pelarut akan semakin banyak. kondisi ini memungkinkan lebih banyak terjadinya tumbukan antara zat pelarut dengan zat terlarut, sehingga zat padat pada umumnya akan lebih cepat larut. 
          c) Ukuran Zat Terlarut
        Apabila kita melarutkan 2 sendok gula pasir kedalam 100 mL air, dan 1 sendok gula batu kedalam 100 mL air, mengapa yang lebih cepat larut adalah 2 sendok gula pasir?. Hal ini karena gula pasir halus memiliki ukuran partikel yang lebih kecil sehingga memiliki permukaan sentuh yang lebih luas dibandingkan gula batu. Jadi, makin kecil ukuran zat terlarut, makin besar kelarutan zat tersebut.
          d) Jenis zat terlarut
          e) Jenis Pelarut

B. Cabang-Cabang Ilmu Fisika
Cabang-Cabang ilmu fisika sangat banyak, antara lain adalah :
    1. Mekanika adalah cabang ilmu fisika yang mempelajari tentang gerak. Mekanika klasik terbagi atas dua bagian, yaitu Kinematika dan Dinamika.
  • Kinematika membahas bagaimana suatu objek dapat bergerak tanpa menyelidiki sebab-sebab apa yang menyebabkan suatu objek dapat bergerak
  • Dinamika mempelajari bagaimana suatu objek dapat bergerak dengan menyelidiki penyebabnya.
   2. Mekanika Kuantum adalah cabang dasar fisika yang menggantikan mekanika klasik pada tataran atom dan subatom.

    3. Mekanika Fluida adalah cabang ilmu fisika yang mempelajari tentang fluida (dapat berupa cairan dan gas) 

    Yang berkaitan dengan Listrik dan Magnet :
   4. Elektronika adalah ilmu yang mempelajari alat listrik arus lemah yang dioperasikan dengan cara mengontrol aliran elektron atau partikel bermuatan listrik dalam satu alat seperti komputer, peralatan elektronik, semikonduktor, dan lain-lain.

    5. Teknik Elektro atau Teknik Listrik adalah salah satu bidang ilmu teknik mengenai aplikasi listrik untuk memenuhi kebutuhan masyarakat.

     6. Elektrostatis adalah ilmu yang mempelajari tentang listrik statis

     7. Elektrodinamis adalah ilmu yang mempelajari tentang listrik dinamis

  8. Bioelektromagnetik adalah disiplin ilmu yang mempelajari tentang fenomena listrik, magnetik, dan elektromagnetik yang muncul pada jaringan makhluk hidup
 
     9. Termodinamika adalah kajian tentang energi atau panas yang berpindah
    
    10. Fisika Inti adalah ilmu fisika yang mengkaji atom/bagian-bagian atom
   
   11. Fisika Gelombang adalah cabang ilmu fisika yang mempelajari tentang gelombang

   12. Fisika Optik (Geometri) adalah ilmu fisika yang mempelajari tentang cahaya

 13. Kosmografi/Astronomi adalah ilmu yang mempelajari tentang berbintangan dan benda-benda angkasa  
 
   14. Fisika Kedokteran (Fisika Medis) membahas bagaimana penggunaan ilmu fisika dalam bidang kedokteran (medis), diantaranya :
  • Biomekanika meliputi gaya dan hukum fluida dalam tubuh
  • Bioakuistik (bunyi dan efeknya pada sel hidup/ manusia)
  • Biooptik (mata dan penggunaan alat optik)
  • Biolistrik (sistem listrik pada sel hidup terutama pada jantung manusia)
   15. Fisika Radiasi adalah ilmu fisika yang mempelajari setiap proses di mana energi bergerak melalui media atau melalui ruang, dan akhirnya diserap oleh benda lain.
   
   16.  Fisika lingkungan adalah ilmu yang mempelajari kaitan fenomena fisika dengan lingkungan. beberapa di antaranya antara lain :
  • Fisika tanah dalam/Bumi
  • Fisika tanah permukaan
  • Fisika udara
  • Hidrologi
  • Fisika gempa (seismografi fisik)
  • Fisika laut (oseanografi fisik)
  • Meteorologi
  • Fisika awan
  • Fisika Atmosfer
  17. Geofisika adalah perpaduan antara ilmu fisika, geografi, kimia, dan matematika. Dari segi Fisika yang dipelajari adalah :
  • Ilmu gempa atau Seismologi yang mempelajari tentang gempa
  • Magnet bumi
  • Gravitasi termasuk pasang surut dan anomali gravitasi bumi
  • Geo-Elektro (aspek listrik bumi), dll
selain yang diuraikan di atas, seiring perkembangan zaman, ilmu fisika telah menjadi bagian dari segi kehidupan misalnya :
  • Ekonomifisika yang merupakan aplikasi fisika dalam bidang ekonomi
  • Fisika Komputasi adalah solusi persamaan-persamaan Fisika- Matematik dengan menggunakan, dan lain-lain yang mengakibatkan Fisika itu selalu ada dalam berbagai aspek.

C. Hubungan Fisika dengan Ilmu Pengetahuan Lain
     Fisika merupakan ilmu yang sangat fundamental diantara semua Ilmu Pengetahuan Alam. Misalnya saja pada Kimia, susunan molekul dan cara-cara praktis dalam mengubah molekul tertentu menjadi yang lain menggunakan metode penerapan hukum-hukum Fisika. Biologi juga harus bersandar ketat pada ilmu fisika dan kimia untuk menerangkan proses-proses yang berlangsung pada makhluk hidup. 
     Tujuan mempelajari Ilmu Fisika adalah agar kita dapat mengetahui bagian-bagian dasar dari benda dan mengerti interaksi antara benda-benda, serta mampu menjelaskan mengenai fenomena-fenomena alam yang terjadi. Walaupun fisika terbagi atas beberapa bidang, hukum fisika berlaku universal. Tinjauan suatu fenomena dari bidang fisika tertentu akan memperoleh hasil yang sama apabila di tinjau dari bidang fisika lain. 
     Selain itu, konsep-konsep dasar fisika tidak saja mendukung perkembangan fisika itu sendiri, tetapi juga mendukung perkembangan ilmu lain dan teknologi. Ilmu fisika menunjang riset murni maupun terapan. Ahli-ahli geologi dalam risetnya menggunakan metode-metode gravimetri, akustik, listrik dan mekanika. peralatan modern di rumah-rumah sakit menerapkan prinsip ilmu fisika dan Ahli-ahli astronomi memerlukan optik spektografi dan teknik radio.